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ABSTRACT  

Reliable and accurate assessment and prediction of bridge condition deterioration is critical for effective 
bridge preservation. Deterioration models, combined with current condition information, can guide 
inspection, maintenance, repair, and rehabilitation planning, and support risk and life-cycle analysis. 
Existing Markov deterioration models, which assume stationary transition probabilities, often fail to 
capture the non-homogeneous nature of bridge deterioration influenced by factors such as age, current 
condition, climate, protective systems, and traffic. This project develops a general age, state, and 
environment dependent stochastic deterioration model that accounts for these variables. For this purpose, 
non-homogeneous Markov deterioration models with time-variant transition probabilities are developed. 
Surrogate models are used to relate these probabilities to explanatory variables such as age, current bridge 
condition, and operation environmental factors. A Bayesian approach is employed to calibrate the model 
using bridge inspection and environmental data. By establishing non-homogeneous Markov models, we 
can better predict bridge conditions. The proposed approach is applied to deterioration modeling for 
bridges in Colorado. Deterioration models are developed for different types of bridges and different bridge 
components. Comparisons with existing models showed the advantages of the proposed model. 
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EXECUTIVE SUMMARY 

This report presents the development of a non-homogeneous Markov deterioration model for predicting bridge 
condition transition probabilities, accounting for the influence of age, state, and environmental factors. The 
primary aim is to improve the accuracy and reliability of bridge condition predictions, which are critical for 
effective bridge preservation and management. 

Methodology 

To address the limitations of existing Markov models that assume stationary transition probability matrices, this 
study employs non-homogeneous Markov models. These models consider the variability in deterioration rates 
influenced by factors such as age, current condition, climate environment, protective systems, and traffic 
conditions. A Bayesian approach is used to calibrate the model parameters, integrating bridge inspection and 
climate data for bridges. 

Key Results and Findings 

1. Model Development: The proposed model uses surrogate modeling to predict time-variant transition 
probabilities based on explanatory variables. The Bayesian framework allows for the calibration of 
model parameters using extensive data from the National Bridge Inventory (NBI) and the Long-Term 
Bridge Performance (LTBP) program. 

2. Application and Results: The model was applied to concrete and pre-stressed concrete bridges in 
Colorado. Results indicate that non-homogeneous models provide a better fit for bridge deterioration 
data, capturing the influence of various factors more effectively, compared with the homogeneous 
Markov model (which can be treated as a special case of the non-homogeneous Markov model) that 
only depends on the current condition but neglects the impacts of other factors. 

3. Comparison with Existing Models: Comparisons with homogeneous Markov models showed that the 
latter tend to underestimate deterioration rates, especially as bridges age. The proposed non-
homogeneous models offer more accurate predictions, which are crucial for timely maintenance and 
resource allocation. 

Implications for Bridge Management 

The improved predictive capabilities of the non-homogeneous Markov models have significant implications for 
bridge management. By providing more accurate deterioration predictions, these models can inform better 
inspection scheduling, maintenance planning, and budgeting decisions, ultimately enhancing the longevity and 
safety of bridge infrastructure. 

Future Work 

Future research will explore incorporating additional factors into the predictive models, conducting sensitivity 
analyses to identify key determinants of bridge deterioration, and addressing the correlations between the 
deterioration of different bridge components. Expanding the application of the model to other states and bridge 
types will further validate its generalizability and robustness. 
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1. INTRODUCTION 

1.1 Background and Literature Review 

Reliable and accurate assessment and prediction of bridge condition deterioration is critical for effective bridge 
preservation. For this purpose, it is important to develop deterioration models that can better predict bridge 
condition deterioration. Bridge inspection can provide information on current conditions as well as bridge 
deterioration, which can be used to guide decision making on bridge inspection, maintenance, and preservation. 

In order to obtain bridge information in a timely manner, appropriate inspection intervals need to be selected by 
bridge managers. After the collapse of the Silver Bridge, U.S. bridges are federally required to be inspected 
every two years based on the National Bridge Inspection Standards (NBIS), and this two-year inspection interval 
remains the most commonly used interval for bridge inspections (Agrawal et al. 2010; Nasrollahi and Washer 
2014). However, such a fixed inspection interval does not consider the effect of the current bridge condition and 
bridge deterioration on the inspection frequencies for bridges (e.g., bridges in good condition typically require 
fewer inspections than bridges in poor condition). This could lead to many unnecessary inspections and thus a 
waste of resources, especially when considering the high cost of bridge inspection activities (Atadero et al. 
2019). Recently, there has been a shift toward risk-based inspection planning (Washer et al. 2016a,b; Hesse et 
al. 2015). For this purpose, stochastic deterioration models for bridge or bridge components are needed. 

Different types of stochastic models have been proposed to predict the deterioration and future condition of 
bridges, e.g., physics/mechanics-based stochastic models (Choe et al. 2008; Kumar et al. 2015; Jia and Gardoni 
2018a,b, 2019; Jia et al. 2021), or statistical deterioration models using Markov chains (Agrawal et al. 2010; 
Wellalage et al. 2014) or Weibull distributions (Agrawal et al. 2010; Nasrollahi and Washer 2014; Li and Jia 
2020a). Bridge deterioration is influenced by many factors and is usually a result of many complex 
(deterioration) processes, e.g., corrosion, concrete degradation, cracking, fatigue (Agrawal et al. 2010). In the 
absence of good mechanistic-based deterioration models, deterioration models (e.g., Markov chains, Weibull-
based models) established based on bridge inspection data are commonly used by state DOTs for bridge asset 
management and have been incorporated in bridge management systems such as AASHTOWare Bridge 
(Agrawal et al. 2010). In the Markov chain-based deterioration model, the key is to establish the transition 
probabilities, which characterize the probability of a bridge or bridge component changing from one condition to 
another during a specific time interval. 

However, existing Markov deterioration models in bridge management systems usually assume stationary 
transition probability matrix (i.e., assuming homogeneous deterioration process), while in reality the 
deterioration process is usually non-homogeneous (Devaraj 2009) and the deterioration rate could be different 
for each bridge or bridge element, considering the differences in influencing factors (or explanatory variables) 
such as age, climate environment, protective systems, and other external conditions (e.g., traffic conditions). Also, 
optimization approaches are typically used to establish the transition probability matrix; however, they suffer 
from drawbacks such as noninvertible matrix and negative transition probabilities (Wellalage et al. 2014). 
More general stochastic models that can capture the non-homogeneous nature of the deterioration process are 
needed to accurately predict bridge or bridge element condition deterioration, as are calibration approaches that 
can establish proper transition probability matrices. 
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1.2 Proposed Research and Organization of This Report 

To address the above challenges, this project develops a general age, state, and environment dependent non-
homogeneous Markov deterioration model with time-variant transition probabilities that are modeled as 
functions of explanatory variables such as age, current bridge condition, and operation environmental factors. A 
Bayesian approach is developed to calibrate the stochastic deterioration model using bridge inspection data and 
the environmental information for different bridges. As an example, the proposed approach is applied to establish 
the deterioration models for bridges in Colorado using bridge inspection and climate data. 

The rest of the report is organized as follows. Chapter 2 presents the proposed non-homogeneous Markov models 
for bridge condition deterioration. Chapter 3 presents the Bayesian framework for calibration of the non-
homogeneous Markov model. Chapter 4 presents application of the proposed model to deterioration modeling of 
bridges in Colorado using bridge inspection and climate data. Comprehensive investigations are carried out to 
highlight the advantages of the non-homogeneous Markov models. Chapter 5 summarizes the research findings. 
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2. NON-HOMOGENEOUS MARKOV MODELS FOR BRIDGE CONDITION 
DETERIORATION 

2.1 Markov Deterioration Model 

Bridge deterioration can be modeled as a Markov chain, which is a stochastic process where the probability of the 
future state only depends on the present state (Cesare et al. 1992). This property can be expressed as 

𝑃𝑃(ξ𝑡𝑡+1 = 𝑐𝑐𝑡𝑡+1|ξ𝑡𝑡} = 𝑐𝑐𝑡𝑡, … . , ξ1 = 𝑐𝑐1, ξ0 = 𝑐𝑐0)                                                    (2.1) 

                              = 𝑃𝑃(ξ𝑡𝑡+1 = 𝑖𝑖𝑡𝑡+1|ξ𝑡𝑡} = 𝑐𝑐𝑡𝑡 

where  𝜉𝜉𝑡𝑡  represents the random state at the time t with t ≥ 0, and c0, c1, ..., ct are the possible condition states 
for the bridges or bridge components. 

A Markov chain can be completely defined by the initial probability that characterizes the initial state of the 
chain, and the transition probability that describes the distribution of the next state based on the current state of 
the chain. Assuming the current state is i and the next state is j, one can denote this transition probability (i.e., 
given the state i at time t, the probability of the state to be j at time t + 1) is as 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑃𝑃(ξ𝑡𝑡+1 = 𝑗𝑗|ξ𝑡𝑡} = 𝑖𝑖                                                       (2.2) 

For a bridge or bridge component which has n possible states in total, the transition probabilities can be written 
as an n × n transition probability matrix 

𝑷𝑷 = �

𝑝𝑝11 𝑝𝑝12 … 𝑝𝑝1𝑛𝑛
𝑝𝑝21 𝑝𝑝22 … 𝑝𝑝2𝑛𝑛
⋮ ⋮ ⋮ ⋮
𝑝𝑝𝑛𝑛1 𝑝𝑝𝑛𝑛2 … 𝑝𝑝𝑛𝑛𝑛𝑛

�                                                         (2.3) 

where ∀𝑖𝑖 and 𝑗𝑗, 𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0, and also ∀𝑖𝑖, ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1 = 1. Typically, it is assumed that the condition of bridges or 

bridge components does not improve (i.e., the “do nothing” assumption) and there is no jumping in condition 
states (which could happen depending on the inspection interval and the deterioration rate) (Kallen 2009). 
Therefore, the transition probability matrix 𝑷𝑷 can be simplified to  

𝑷𝑷 =

⎣
⎢
⎢
⎢
⎡
𝑝𝑝11 𝑝𝑝12 0 0 0
0 𝑝𝑝22 𝑝𝑝23 0 0
0 0 𝑝𝑝33 𝑝𝑝34 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 1⎦

⎥
⎥
⎥
⎤
                                                         (2.4) 

                       =

⎣
⎢
⎢
⎢
⎡
𝑝𝑝11 1 − 𝑝𝑝11 0 0 0
0 𝑝𝑝22 1 − 𝑝𝑝22 0 0
0 0 𝑝𝑝33 1 − 𝑝𝑝33 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 1⎦

⎥
⎥
⎥
⎤
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Existing Markov deterioration models in bridge management systems usually assume stationary transition 
probability matrix (i.e., assuming homogeneous deterioration process). In this case, the transition probability pij 
is constant for any time t, which means the deterioration of the bridges or bridge components follows the same 
pattern whenever it starts. The above transition probability is the so-called one-step transition probability, since 
it only involves the transition probability from time t to time t + 1, e.g., this time step could be a unit inspection 
interval. Based on the Chapman-Kolmogorov equation, the m-step transition probability matrix is defined as the 
product of m one-step transition probability matrices (Baik et al. 2006; Devaraj 2009), denoted by P(m) = Pm. 

However, in reality, the deterioration process is non-homogeneous (Devaraj 2009), and the deterioration rate 
could be different for each bridge or bridge element, considering the differences in influencing factors (or 
explanatory variables) such as age, climate environment, protective systems, and other external conditions (e.g., 
traffic conditions). For non-homogeneous Markov models, the transition probabilities are functions of the above 
influencing factors. To establish such functional relationships we use a surrogate model. 

2.2 Surrogate Modeling for Transition Probabilities 

The idea of a surrogate model to establish a simple mathematical relationship between the inputs and outputs 
based on a database of results (i.e., input and output pairs). It has been used to establish predictive relationships 
based on either empirical data or from evaluating the expensive model (e.g., physical experiment or expensive 
high-fidelity numerical model), with the ultimate goal to maintain the accuracy of the expensive data/model 
utilized to produce this database while providing greatly enhanced computational efficiency (Sacks et al. 1989; 
Simpson et al. 1998; Kennedy and O’Hagan 2000; Wang 2003; Rasmussen 2004; Forrester et al. 2008; Jia and 
Taflanidis 2013; Jia et al. 2016; Li and Jia 2020b). For prediction at new inputs, the surrogate model predictions 
can be used. Surrogate models can be treated as data-driven models. 

For the current problem, we want to establish a surrogate model for the transition probabilities where the input 
parameters correspond to the explanatory variables such as age, climate environment, and other external 
conditions like traffic, and the outputs correspond to the transition probabilities. There are many different types of 
surrogate models, and here we adopt the polynomial regression model to build the relationship between the input 
parameters and the transition probabilities. Also, to ensure that the prediction of transition probability by the 
surrogate model is between 0 and 1, instead of using transition probability as output, we select the log-odds of 
the transition probabilities as outputs, which take value from negative infinity to positive infinity. 

The log-odds of the transition probabilities, denoted 𝑦𝑦(𝐱𝐱), can be written as 

𝑦𝑦(𝐱𝐱) = 𝑓𝑓(𝐱𝐱)𝑇𝑇β                                                                          (2.5) 

where x = [x1, x2, ..., xn ]T represent the 𝑛𝑛𝑥𝑥 explanatory variables, f(x) is the q-dimensional vector of basis 
function, e.g., linear or quadratic functions of x. For the linear and full quadratic cases, q equals to (𝑛𝑛𝑥𝑥 + 1) 
and (𝑛𝑛𝑥𝑥 + 1)(𝑛𝑛𝑥𝑥 + 2) 2⁄ , respectively. β = [β1, β2, ..., βq]T is the regression coefficients vector. 

Once calibrated/established, the surrogate model can be used to predict the log-odds of the transition 
probabilities for any new input x, and we will denote this prediction 𝑦𝑦�(𝐱𝐱). Based on the log-odds, in the end, the 
one-step transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 for any new input x can be predicted by 

𝑝̂𝑝𝑖𝑖𝑖𝑖(𝑥𝑥) = 𝑒𝑒𝑓𝑓(𝑥𝑥)𝑇𝑇β

1+𝑒𝑒𝑓𝑓(𝑥𝑥)𝑇𝑇β                                                                             (2.6) 
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For the selection of input parameters, we consider the different influencing factors, such as age, current bridge 
condition, bridge design parameters (e.g., structural length), climate environment, and other external conditions 
(e.g., traffic conditions). In comparison, only the current bridge condition is considered when establishing the 
homogeneous model for bridge deterioration. 

As can be seen, the established transition probability 𝑝̂𝑝𝑖𝑖𝑖𝑖(𝒙𝒙) is a function of time and other influencing factors 
rather than constant, hence the established model corresponds to a non-homogeneous Markov model. In the end, 
the transition probability matrix will be different for different bridges and bridge components, rather than the 
same (which is the case for the homogeneous Markov model). The transition probability matrix for a bridge or 
bridge component with input characteristics 𝐱𝐱 can be written as 

𝑷𝑷�(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎡
𝑝̂𝑝11 1 − 𝑝̂𝑝11 0 0 0
0 𝑝̂𝑝22 1 − 𝑝̂𝑝22 0 0
0 0 𝑝̂𝑝33 1 − 𝑝̂𝑝33 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 1⎦

⎥
⎥
⎥
⎤
                                              (2.7) 

where 𝑝̂𝑝𝑖𝑖𝑖𝑖(𝐱𝐱) is calculated from Eq. (2.6). 

Once the deterioration models are calibrated, they can be used to predict deterioration of individual bridges and 
further for deterioration and condition prediction of the entire bridge inventory (Li and Jia 2021). 
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3. BAYESIAN FRAMEWORK FOR CALIBRATION OF NON-
HOMOGENEOUS MARKOV DETERIORATION MODEL 

3.1 Bayesian Updating of Model Parameters 

To calibrate the model parameters (i.e., 𝜷𝜷) in Eq. (2.6), Bayesian updating is used. Bayesian model updating 
can provide the updated probability density of the model parameters (i.e., the posterior) by incorporating 
information from the dataset and the prior information on the model parameters, and it has been used to update 
statistical distribution models of the time-in-condition rating for bridges (Li and Jia 2020a). Let D denote the 
available inspection dataset and 𝑝𝑝(𝜷𝜷) the prior information/distribution for the model parameters 𝜷𝜷. Based on 
Bayes’ Theorem, the posterior distribution for 𝜷𝜷 can be written as 

𝑝𝑝(𝜷𝜷|𝐷𝐷) =
𝑝𝑝(𝐷𝐷|𝜷𝜷)𝑝𝑝(𝜷𝜷)

∫𝑝𝑝(𝐷𝐷|𝜷𝜷)𝑝𝑝(𝜷𝜷) 𝑑𝑑𝜷𝜷
=

𝐿𝐿(𝐷𝐷|𝜷𝜷)𝑝𝑝(𝜷𝜷)
∫ 𝐿𝐿(𝐷𝐷|𝜷𝜷)𝑝𝑝(𝜷𝜷) 𝑑𝑑𝜷𝜷

∝ 𝐿𝐿(𝐷𝐷|𝜷𝜷)𝑝𝑝(𝜷𝜷)                             (3.1) 

where P (D|β) is the probability of observing the data given the model parameters β, and it is equal to L(D|β), 
which is the likelihood function, and the denominator is a constant known as the “evidence” 𝑃𝑃(𝐷𝐷) =
∫{𝑃𝑃(𝐷𝐷|β})𝑝𝑝(β)𝑑𝑑β = ∫{𝐿𝐿(𝐷𝐷|β})𝑝𝑝(β)𝑑𝑑β. The prior is usually selected to reveal our initial knowledge of the 
model parameters, where either informative or non-informative priors can be used. To establish the posterior 
distribution, one key part is to establish the likelihood function for the dataset D. 

When the number of data increases or is large, the posterior distribution typically concentrates in a small region, 
and for such cases point estimates of the model parameter, either the maximum a posteriori (MAP) or maximum 
likelihood estimate (MLE), can be used to establish an estimate of the model parameter. 

3.2 Maximum Likelihood Estimation 

To calibrate the model parameters (i.e., β) in Eq. (2.6), MLE is adopted in this project. Assume that the observed 
condition states of a specific bridge or bridge component are c1, ..., cn, then the likelihood of observing any 
possible pair of the states (i, j)is equal to the product of the transition probabilities (Kallen and Van Noortwijk 
2006) 

𝐿𝐿(𝑐𝑐1, … , … 𝑐𝑐𝑛𝑛|β} = �𝑝𝑝𝑖𝑖𝑖𝑖�𝑥𝑥𝑘𝑘�
𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜

𝑘𝑘=1

                                                          (3.2) 

where nobs is the number of the observations of the state pairs (i, j) for a specific bridge or bridge component. 
Since the inspection of each bridge system is independent from others, the likelihood of the condition state pairs 
for all bridges in the bridge inventory can be calculated by simply multiplying the likelihood for each bridge or 
its component 

𝐿𝐿(𝑐𝑐1, … , … 𝑐𝑐𝑛𝑛|β} = � � 𝑝𝑝𝑖𝑖𝑖𝑖�𝐱𝐱𝑙𝑙,𝑘𝑘�

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙

𝑘𝑘=1

𝑁𝑁

𝑙𝑙=1

                                                       (3.3) 

where nobs,l is the number of the observations of the state pairs (i, j) for the lth bridge or bridge component, and 
N is the total number of bridges. 
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To calibrate the model, we need data on bridge conditions over time and also information on the bridges, 
external conditions, and climate data, which are discussed next. Using the data, the optimal parameters for β 
can be found by maximizing the likelihood function. Numerically, we can maximize the log of the likelihood 
function, i.e., 

β∗ = arg max
β

log[𝐿𝐿(𝑐𝑐1, … , … 𝑐𝑐𝑛𝑛|β}) = arg max
β

� � log�𝑝𝑝𝑖𝑖𝑖𝑖�𝐱𝐱𝒍𝒍,𝒌𝒌��

𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙

𝑘𝑘=1

𝑁𝑁

𝑙𝑙=1

                           (3.4) 

3.3 Bridge Condition Data 

Bridges in the U.S. are mandated to be inspected under the guidance of the National Bridge Inspection Standards 
(NBIS), and the associated data are stored in the National Bridge Inventory (NBI), forming a comprehensive 
source of bridge inspection information (Ghonima et al. 2018). The NBI database contains bridge condition 
information and uses condition ratings (CRs) to describe the bridge condition. Typically, the CRs are 
determined by bridge inspectors based on their subjective evaluation of bridges’ physical conditions. In the NBI 
database, CRs ranging from 0 to 9 are assigned to different bridge components (i.e., superstructure, substructure, 
and deck), where 0 represents the bridge is in a failed condition and 9 represents the bridge is in an excellent 
condition. Figure 3.1 shows the full descriptions of different CRs used in the NBI database. More details about 
the CRs and corresponding descriptions used to describe the general condition of bridges or bridge components 
can be found in FHWA (1995). Here we also show some examples of CR data in the NBI database (see Table 
3.1). The NBI database also provides information about the design parameters and traffic conditions. In this work, 
we will use NBI database bridge information about the CRs, design parameters, and traffic conditions to calibrate 
the surrogate models for bridge condition deterioration. 

 

Figure 3.1 Condition ratings (i.e., code in the figure) in NBI database and corresponding descriptions 
(FHWA 1995) 
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Table 3.1 Examples of condition rating data in NBI database (STRUCTURE_NUMBER represents the structure 
number of bridges; DEC_COND, SUPERSTRUCTURE_COND, and SUBSTRUCTURE_CON 
represent the condition ratings of bridge decks, superstructures, and substructures, respectively) 

STRUCTURE_NUMBER DECK_COND SUPERSTRUCTURE_COND SUBSTRUCTURE_COND 
0400-4 8 8 8 
0400-5 8 7 8 
0400-6 8 8 7 
0403-1 8 8 8 
0403-4 7 7 7 

0401-SV1 7 7 7 
0401-SV2 7 7 7 
0401-SV3 6 7 7 
0405-100 7 7 7 
0405-101 7 7 7 
0405-102 7 7 7 
0405-103 7 7 7 
0405-104 7 7 7 
0405-105 7 7 7 
0405-106 7 7 7 
0405-107 7 7 7 
0405-234 5 6 6 
0405-710 7 7 7 

0405-1910 6 7 7 
0405-3410 8 8 8 
0405-5190 6 6 6 
0405-7100 7 7 7 
0405-7102 7 7 7 
0405-7112 9 8 8 
0405-farm 7 7 7 

ECA-P-001 8 8 8 
ECA-P-002 6 8 8 

ECA-BT-001 8 8 8 
ECA-BT-002 6 6 8 
ECA-BT-003 8 8 8 
ECA-BT-004 6 8 7 

NKA-SFUURD-001 8 8 8 
 

3.4 Bridge Climate Data 

While the NBI database provides comprehensive information about the design parameters, traffic conditions, CRs, 
and other factors for bridges, it does not include the climate environment of the corresponding bridges, which 
may also have a large impact on bridge deterioration. One goal of this project is to identify the influence of 
climate/environmental conditions on bridge deterioration; therefore, climate/environmental data are needed, and 
such data must be collected from other databases. For this, we will use the climate data for different bridges 
from the LTBP program, which is a Federal Highway Administration (FHWA) long-term research effort to 
collect research-quality U.S. bridge data to help the bridge community better understand bridge performance 
(FHWA 2013). These data provide the annual and monthly number of freeze/thaw cycles and snowfalls for a 
representative sample of highway bridges on a national basis. Therefore, the climate/environmental data are 
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extracted from LTBP to match the bridges in the NBI database. Figure 3.2 shows three examples (corresponding 
to bridge 0400-4, 0401-SV1, and 0405-100 in Table 3.1) of the annual number of freeze/thaw cycle and snowfall 
data in the LTBP program. 

 

 

Figure 3.2 Examples of climate data in LTBP program (source: https://infobridge.fhwa.dot.gov/)
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4. DETERIORATION MODELING FOR BRIDGES IN COLORADO 

To demonstrate the effectiveness of the proposed approach, we apply it to establish non-homogeneous Markov 
deterioration models for bridges in Colorado. In this example, we consider building deterioration models at the 
component level. More specifically, for each bridge, Markov deterioration models are established separately for 
the deck, superstructure, and substructure components. Also, different bridge types are considered in this 
example, including concrete and pre-stressed bridges. Steel bridges are not considered here since the available 
data are very limited (see Table 4.1) and might result in low prediction accuracy of the surrogate model. 

4.1 Selection of Input Parameters 

In this example, non-homogeneous age and state-dependent Markov deterioration models will be established that 
can explicitly consider the impact of age, condition history, environment, traffic conditions, and other important 
factors. For this purpose, the model input parameters need to be carefully selected. Note that, to build a good 
predictive model for the transition probabilities, factors/parameters that have a significant contribution to the 
bridge deterioration should be included (Li and Burgueño 2010). To determine what parameters significantly 
impact concrete bridge deck deterioration, one can rely on engineering knowledge, information from existing 
studies/literature, or statistical analyses to obtain the correlations between the possible parameters and the 
transition probabilities (Li and Burgueño 2010). 

In this example, the model input parameters are selected based on engineering knowledge and the existing 
research work by Madanat et al. (1995) and Winn et al. (2013). First, current condition rating (CR) and age are 
expected to impact the decks’ future deterioration process. Second, a set of bridge design parameters are 
selected, i.e., length of maximum span and deck width. Third, traffic condition is also an important factor on 
bridge deck deterioration, and thus average daily traffic is selected as one of the input parameters. Finally, 
climate/environmental conditions also contribute to bridge deck deterioration. It is expected that with more 
freeze/thaw cycles, decks are more vulnerable to deterioration. In the end, the following six variables are 
selected as input parameters: current CR CR0, average daily traffic ADT, age Age, deck width DecWid, length of 
maximum span LenSpan, and number of freeze/thaw cycles NumFreeze. 

For comparison purposes, we also built homogeneous Markov deterioration models. The homogeneous Markov 
model can be treated as a special case of the non-homogeneous Markov model with only the current CR CR0 as 
the input parameter (i.e., the transition probability only differs for different CRs without considering impacts of 
other factors). 

4.2 Data Collection and Processing 

In this example, 20 years of bridge inspection data from 1998 to 2017 for bridges in Colorado are extracted from 
the NBI database to develop Markov deterioration models for bridge decks. The following procedures are 
performed to process the raw NBI CR data: (1) In the database, some CRs may suddenly increase to a higher 
value (i.e., better condition) in a specific inspection year and then return to the same condition as before in the 
next inspection year. In such a case, the suddenly changed CR is regarded as noise (or variability in the 
subjectivity of the inspectors) and replaced by the previous year’s CR. (2) Some NBI data show that the CRs 
improved as the bridge age increased, and the improvement may be the result of bridge reconstruction and repair. 
Such data are not useful in developing the Markov model for transition probabilities, thus CR data of 
reconstructed or repaired bridge components are not considered for this analysis. (3) Bridge condition records 
with missing data are excluded from the analysis. 

Note that bridge components sometimes may stay in the same CR after repair or maintenance. For these cases, 
we currently cannot differentiate them from bridges without repair or maintenance if based only on the 
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inspection data. However, in the future, if we can have bridge inspection information correlated with repair 
and maintenance information, CRs for bridges with repair or maintenance can also be identified. Also note that 
bridge decks with CRs equal to 0 to 2 are excluded from the analysis. Such bridges are in seriously poor 
condition, as described in FHWA (1995), and typically require immediate repair or maintenance. 

For the climate data, as mentioned earlier, the number of freeze/thaw cycles is extracted from the LTBP 
database for all the considered bridges. To match the bridges in the NBI database, a structural number of the 
bridges is chosen as the criterion considering that the NBI database and LTBP follow the same coding guide. 

4.3 Surrogate Model 

For the surrogate model, we used linear basis function, and f (x) corresponds to [1, x1, ..., xn ]T . Note that more 
generally, higher order basis functions can also be used, e.g., quadratic basis functions, in which case there will 
be more coefficients to be calibrated. The use of higher order basis function may potentially help the surrogate 
model to capture more complex variations with the inputs. Here, linear basis function is used to facilitate an 
easier interpretation of the established surrogate model, and how the outputs are related to each of the inputs xi. 
We used the normalized values of the selected input parameters as inputs to the surrogate model. As mentioned 
earlier, maximum likelihood estimation is used to calibrate the model parameters β. More specifically, gradient-
based optimization with multiple start points is performed to maximize the likelihood in Eq. (3.3) and establish the 
optimal parameters β for the surrogate model. Table 4.1 shows the total number of training data obtained from the 
NBI database and the LTBP program for developing the surrogate model. As can be observed, we only have 
limited training data for steel bridges, and the surrogate model trained using the data might have low prediction 
performance. Therefore, this example only constructs surrogate models for concrete or pre-stressed bridges to 
predict their deterioration. 

Table 4.1 Total number of training data for each type of bridge and each bridge component 
 Concrete 

bridge 
Steel 
bridge 

Pre-stressed bridge 

Deck 14,411 18 176 
Superstructure 15,293 18 206 
Substructure 14,795 18 224 

4.4 Results for Concrete Bridge Decks 

This section shows and discusses the results for the non-homogeneous Markov deterioration model for the 
concrete bridge decks. 

4.4.1 Transition Probability Matrices 

The MLE estimates of the coefficients β are presented in Table 4.2. Using the established surrogate model, we 
can predict the time-variant transition probabilities for any bridge deck based on the corresponding x 
information. 
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Table 4.2 MLE estimates of the coefficients β for concrete bridge deck 
Basis function Coefficients MLE estimates 

1 β1 6.931 
CR0 β2 -6.220 
ADT β3 -0.957 
Age β4 -0.485 

DecWid β5 0.075 
LenSpan β7 -0.157 

NumFreeze β9 -0.092 
 

Table 4.3 shows the transition probability matrices of a specific concrete bridge deck during its service life 
predicted by the established non-homogeneous Markov model. The other input parameters of the bridge are 
fixed at: ADT = 10000, DecWid = 100ft, LenSpan = 200ft and NumFreeze = 200. From Table 4.3, we can see 
that the bridge deck has a smaller probability of staying in the same CR as its age increases. This can be seen by 
comparing the pii values for particular CRs for different ages. This means the bridge deck will have a higher 
probability to deteriorate when it has been in service for many years compared with when it was newly built. 
Also, looking at the transition probability matrix for a particular age, we can find that when the deck is in 
relatively good condition (e.g., CR = 9, 8, and 7), it will be more likely to deteriorate in comparison with the case 
when the deck is in fair or bad conditions (e.g., CR = 6, 5, 4, and 3). 
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Table 4.3 Transition probability matrices of a concrete bridge deck  
predicted by non-homogeneous Markov model 

Age = 0 
CR 9 8 7 6 5 4 3 
9 0.536 0.464 0 0 0 0 0 
8 0 0.765 0.235 0 0 0 0 
7 0 0 0.902 0.098 0 0 0 
6 0 0 0 0.963 0.037 0 0 
5 0 0 0 0 0.987 0.013 0 
4 0 0 0 0 0 0.995 0.005 
3 0 0 0 0 0 0 0.998 

Age = 20 years 
CR 9 8 7 6 5 4 3 
9 0.514 0.486 0 0 0 0 0 
8 0 0.749 0.251 0 0 0 0 
7 0 0 0.894 0.106 0 0 0 
6 0 0 0 0.960 0.040 0 0 
5 0 0 0 0 0.985 0.015 0 
4 0 0 0 0 0 0.995 0.005 
3 0 0 0 0 0 0 0.998 

Age = 50 years 
CR 9 8 7 6 5 4 3 
9 0.481 0.519 0 0 0 0 0 
8 0 0.723 0.277 0 0 0 0 
7 0 0 0.880 0.120 0 0 0 
6 0 0 0 0.954 0.046 0 0 
5 0 0 0 0 0.983 0.017 0 
4 0 0 0 0 0 0.994 0.006 
3 0 0 0 0 0 0 0.998 

Age = 75 years 
CR 9 8 7 6 5 4 3 
9 0.453 0.547 0 0 0 0 0 
8 0 0.700 0.300 0 0 0 0 
7 0 0 0.868 0.132 0 0 0 
6 0 0 0 0.949 0.051 0 0 
5 0 0 0 0 0.981 0.019 0 
4 0 0 0 0 0 0.993 0.007 
3 0 0 0 0 0 0 0.998 

For the purpose of comparison, we also use the homogeneous Markov model to calculate the transition 
probability matrix for the same bridge deck, as shown in Table 4.4. By comparing this table with transition 
probability matrices for different ages in Table 4.3, we can observe that the homogeneous Markov model may 
underestimate the deterioration of the bridge deck within an inspection interval, especially when the bridge is 
initially in good condition and when it is older. 
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Table 4.4 Transition probability matrix of a concrete bridge deck predicted 
by homogeneous Markov model 

CR 9 8 7 6 5 4 3 
9 0.646 0.354 0 0 0 0 0 
8 0 0.826 0.174 0 0 0 0 
7 0 0 0.925 0.075 0 0 0 
6 0 0 0 0.970 0.030 0 0 
5 0 0 0 0 0.988 0.012 0 
4 0 0 0 0 0 0.995 0.005 
3 0 0 0 0 0 0 0.998 

4.4.2 Expected Condition Rating Over Time 

For the same bridge deck, the variation of the expected CR as the age increases is calculated from the non-
homogeneous and homogeneous Markov models. Figure 4.1 shows the expected CR as the age of the bridge 
deck increases. It can be observed that when the deck age is low (e.g., less than 20 years), the deterioration 
predicted by both models are relatively close. As its age increases, the difference between the predictions for the 
expected CR based on the two models becomes larger and larger. Again, this comparison indicates that the 
homogeneous Markov model is more likely to underestimate the deterioration of the bridge deck considering 
that the deterioration rate increases as the age of the deck increases. A non-homogeneous Markov model can 
capture the influence of the age, bridge design parameters, traffic conditions, and climate on the deterioration of 
the bridge deck, which may more accurately predict the bridge condition deterioration. 

 

Figure 4.1 Expected condition rating predicted by homogeneous and non-homogeneous Markov model 
for concrete bridge deck 
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Next, we applied both the non-homogeneous and homogeneous Markov models to the entire bridge inventory 
and predicted the deterioration of all bridges 120 years into the future. Such information can be useful for bridge 
asset management and also guide decision-making regarding bridge inspection, maintenance, and budgeting. 
Figure 4.2 shows the percentage of the bridge decks in each CR in different years predicted by both models. In this 
figure, percentage at a time equal to 0 year corresponds to the percentage of the bridge decks in each CR in 2017. 
Essentially, we are predicting from 2017 how the bridge inventory deteriorates in the future. For both models, 
the following observations can be made: (1) as time increases, the percentage of bridge decks in CRs equal to 3 
and 4 will increase, while the percentage of bridge decks in CRs equal to 7 and 8 will decrease, and such a trend 
is monotonic for the current bridge inventory; (2) as time increases, the percentage of bridge decks in CRs equal 
to 5 and 6 first increases and then decreases, and the changing point for CR=6 happens earlier than the one for 
CR=5. 

On the other hand, comparing the predictions by both models, we can find that within a short time period, the 
percentage of bridge decks that stay in each CR predicted by the homogeneous Markov model is close to that 
predicted by the non-homogeneous Markov model. However, as time increases, the difference between the 
predictions by these two models becomes larger. Comparing the values for different CRs, we can see that the 
homogeneous Markov model overestimates the percentage of bridge decks in CRs 6 and 7 but underestimates 
the percentage of bridge decks in CRs 3, 4, and 5. 

Overall, the results show the importance of including the different influencing variables in bridge deterioration 
modeling, and the use of non-homogeneous Markov models could provide improved prediction of bridge 
deterioration. Such information can be used to guide bridge asset management. Also, note that the above 
observations are for the considered bridge inventory, and the focus is to highlight the differences between 
predictions by the homogeneous Markov deterioration model and the non-homogeneous Markov deterioration 
model. If the proposed model is applied to a different bridge inventory, the difference between these two 
models and resulting trends may vary. 
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Figure 4.2 Percentage in each condition rating predicted by non-homogeneous (solid lines) and homogeneous 
(dash lines) Markov deterioration models for concrete bridge deck 

4.5 Results of Other Bridges and Bridge Components 

In this section, the results from the proposed non-homogeneous Markov deterioration models for other bridges 
and bridge components are discussed. 

4.5.1 Calibrated Model Parameters 

The MLE estimates of the coefficients β are presented in Table 4.5. From the table we can observe that, for 
different bridge types, the explanatory variables might have different levels of impact on the deterioration. For 
example, the current CR CR0 has a  larger impact on the deterioration of pre-stressed bridge components 
compared with concrete bridge components. Using the established surrogate model, we can predict the time-
variant transition probabilities for any concrete or pre-stressed bridge components based on the corresponding x 
information. 

  



 
17 

Table 4.5 MLE estimates of the coefficients β for different bridges and bridge components (C/SUP and C/SUB 
represent concrete bridge superstructure and substructure, respectively; P/DEC, P/SUP, and P/SUB 
represent pre-stressed bridge deck, superstructure, and substructure, respectively) 

Basis function Coefficients 
MLE estimates 

C/SUP C/SUB P/DEC P/SUP P/SUB 
1 β1 6.756 7.027 16.177 11.106 9.482 

CR0 β2 -5.626 -6.071 -16.557 -10.266 -9.026 
ADT β3 -0.370 1.608 2.201 2.019 7.526 
Age β4 -1.307 -2.066 -6.253 -3.948 -2.689 

DecWid β5 -0.594 -1.046 -1.284 -1.527 -2.154 
LenSpan β7 0.120 0.936 1.515 -0.180 -0.317 

NumFreeze β9 0.160 0.654 -1.492 -0.921 -0.791 

Similar to concrete bridge decks, we applied both the non-homogeneous and homogeneous Markov models to 
the entire bridge inventory and predicted the deterioration of all other bridge components over 120 years in the 
future. Figure 4.3 to Figure 4.7 show the percentage of the concrete bridge superstructures/substructures and pre-
stressed bridge decks/superstructures/substructures in each CR in different years predicted by both models. Again, 
in these figures, percentage at a time equal to 0 year corresponds to the percentage of the bridge decks in each 
CR in 2017. Note that for pre-stressed bridge components, the best CR observed in 2017 is 7, while for concrete 
bridge components, the best CR observed in 2017 is 8. From the figures, we first find that for the same type of 
bridge, the deterioration of different bridge components might show very similar pattern or speed. By comparing 
the percentages in 2017 for all cases, we then observe that bridge components in very good (e.g., CR=8) or poor 
(e.g., CR=3 or 4) conditions account for a small proportion, and the bridges with CRs equal to 5, 6, and 7 are 
more likely to be seen in the inventory. 

The proportion of bridges in different CRs experiences significant changes as the time increases. For example, 
for all cases, the bridge components in CRs equal to 7 account for most of the inventory in 2017; but as 120 
years pass, we might not see any bridges staying in CRs equal to 7. This trend holds the same for both the non-
homogeneous and homogeneous Markov models. By contrast, the percentage of bridge components in CRs equal 
to 3 or 4 gradually becomes larger as time increases, and as 120 years pass, bridge components in CRs equal to 3 
or 4 will account for a large proportion of the inventory. But note that the increasing trend of pre-stressed bridge 
components in CRs equal to 4 as predicted by the non-homogeneous Markov model is not monotonic, i.e., 
increase first and then decrease. Such non-monotonic change can also be seen for concrete and pre-stressed 
bridge components in CRs equal to 5 or 6. In these cases, we may obtain different trends (i.e., monotonic changes) 
of the percentages predicted by the homogeneous Markov models, and only the change of the bridges in CRs 
equal to 6 shows an obvious non-monotonic trend. Overall, during a short time period, the percentages of the 
bridge components that remain in each CR predicted by both the non-homogeneous and homogeneous Markov 
models are close, but as time increases, the homogeneous Markov models may underestimate or overestimate 
the percentage of bridge components in different CRs. Again, based on the results, we can conclude that it is 
important to include the different influencing variables in bridge deterioration modeling. 
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Figure 4.3 Percentage in each condition rating predicted by non-homogeneous (solid lines) and homogeneous 
(dash lines) Markov deterioration models for concrete bridge superstructure 
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Figure 4.4 Percentage in each condition rating predicted by non-homogeneous (solid lines) and homogeneous 
(dash lines) Markov deterioration models for concrete bridge substructure 
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Figure 4.5 Percentage in each condition rating predicted by non-homogeneous (solid lines) and homogeneous 
(dash lines) Markov deterioration models for pre-stressed bridge deck 
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Figure 4.6 Percentage in each condition rating predicted by non-homogeneous (solid lines) and homogeneous 
(dash lines) Markov deterioration models for pre-stressed bridge superstructure 
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Figure 4.7 Percentage in each condition rating predicted by non-homogeneous (solid lines) and 
homogeneous (dash lines) Markov deterioration models for pre-stressed bridge substructure 
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5. CONCLUSIONS 

This project developed a non-homogeneous Markov deterioration model for predicting bridge condition 
transition probabilities. By capturing the impact of various important factors, such as age, state, and 
environment, the established model allows more accurate and reliable prediction of bridge conditions. As 
an example, the proposed approach was applied to establish transition probabilities for bridges in 
Colorado using NBI bridge condition data and LTBP climate data. The results highlighted the importance 
of including the different influencing variables in bridge deterioration modeling; compared with 
homogeneous Markov models, the use of non-homogeneous Markov models could provide improved 
bridge deterioration predictions. Because the current condition is one of the inputs into the model, the 
proposed model can be used to model deterioration even if the bridge undergoes maintenance actions. In 
such cases, the updated condition after the maintenance actions will be used as the new/updated input into 
the model.  

The application example mainly focuses on concrete and pre-stressed bridges in Colorado, and different 
bridge components are considered in the example. However, the proposed non-homogeneous Markov 
model is general, and it can be easily applied to bridges and bridge components of other states.  

Future research will consider including other factors as additional input parameters to inform better 
predictive deterioration models, especially considering that a variety of information, which has been and 
continues to be collected, will help the bridge community to better understand bridge performances. In 
addition, sensitivity analysis on the input parameters may also reveal interesting trends that could be 
helpful for improving the deterioration models. How to consider the correlations between deterioration of 
different bridge components when establishing non-homogeneous Markov models for multiple bridge 
components is also a future research topic of great interest. 
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